A Separation and Alignment Framework for Black-Box Domain Adaptation

Published: 01 Jan 2024, Last Modified: 19 May 2025AAAI 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Black-box domain adaptation (BDA) targets to learn a classifier on an unsupervised target domain while assuming only access to black-box predictors trained from unseen source data. Although a few BDA approaches have demonstrated promise by manipulating the transferred labels, they largely overlook the rich underlying structure in the target domain. To address this problem, we introduce a novel separation and alignment framework for BDA. Firstly, we locate those well-adapted samples via loss ranking and a flexible confidence-thresholding procedure. Then, we introduce a novel graph contrastive learning objective that aligns under-adapted samples to their local neighbors and well-adapted samples. Lastly, the adaptation is finally achieved by a nearest-centroid-augmented objective that exploits the clustering effect in the feature space. Extensive experiments demonstrate that our proposed method outperforms best baselines on benchmark datasets, e.g. improving the averaged per-class accuracy by 4.1% on the VisDA dataset. The source code is available at: https://github.com/MingxuanXia/SEAL.
Loading