Abstract: In recent years, there has been a trend in the field of recommender systems towards multi-task modeling and multi-scenario modeling. The aim is to enhance the performance of various tasks and scenarios by jointly training on multiple tasks or scenarios to learn common patterns and features. Joint modeling of tasks and scenarios has also received widespread attention recently. However, despite the rich proposals of methods for Multi-Task Learning (MTL), Multi-Scenario Learning (MSL), and Multi-Task-Multi-Scenario Learning (MTMSL) in recent years, there still lacks a comprehensive benchmark to evaluate these methods. Previous studies often employed different datasets, data processing techniques, data partitioning strategies, and hyperparameter settings, making replication of existing research and fair comparison of experimental results challenging. To address this challenge, we introduce MMLRec, the first unified comprehensive benchmark for evaluating MTL, MSL and MTMSL, featuring consistent dataset processing and identical parameter settings. This benchmark implements a range of MTL, MSL, and MTMSL algorithms, and evaluates them on multiple commonly used recommender systems datasets. Through fair comparative experiments, we find that some structurally simplistic recommendation algorithms are underestimated, as they can achieve comparable results to more complex algorithms while maintaining lower complexity. Furthermore, our experimental analysis indicates that more complex methods exhibit better robustness when there are significant differences between tasks or scenarios. By providing a unified framework (MMLRec), our goal is to promote rapid evaluation and inspire innovative research in this continuously evolving field. We hope that our open-source benchmark can facilitate swift, equitable evaluations, while also fostering further breakthrough research in the domains of MTL, MSL, and MTMSL.
Loading