ALO: Addressing Class Imbalance in Radiology Report Generation through Anatomy-Level Oversampling

03 Dec 2025 (modified: 15 Dec 2025)MIDL 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Class imbalance, Structured report generation, Vision-language models
Abstract: Radiology report generation aims to connect visual understanding with clinical language, yet most methods rely on free-text supervision, which is highly variable and difficult to evaluate. Clinical datasets are also dominated by normal findings, causing models to underreport abnormalities. While recent works focus on architectural advances, we show that structured supervision and balanced sampling can yield substantial gains in clinical performance. We convert free-text reports into structured anatomy-level representations and introduce Anatomy-Level Oversampling (ALO), a data centered sampling strategy that balances normal and abnormal findings for each anatomical region. This structure provides consistent supervision and enables more informative evaluation. Across three public datasets, ALO improves sensitivity to pathological findings while remaining fully model agnostic. On internal validation, ALO increases F1-Score by 50\% and CRG by 5.8\%, and on external validation, it increases F1-Score by 45.1\% and CRG by 5\%. These results highlight the importance of structured data and balanced sampling for reliable report generation.
Primary Subject Area: Generative Models
Secondary Subject Area: Application: Radiology
Registration Requirement: Yes
Reproducibility: https://github.com/Kurin-FAU/ALO
Visa & Travel: No
Read CFP & Author Instructions: Yes
Originality Policy: Yes
Single-blind & Not Under Review Elsewhere: Yes
LLM Policy: Yes
Submission Number: 274
Loading