AVERAGE CONTROLLED AND AVERAGE NATURAL MI-CRO DIRECT EFFECTS IN SUMMARY CAUSAL GRAPHS

ICLR 2026 Conference Submission7760 Authors

16 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Summary causal graph, Controlled direct effect, Natural direct effect
Abstract: In this paper, we investigate the identifiability of average controlled direct effects and average natural direct effects in causal systems represented by summary causal graphs, which are abstractions of full causal graphs, often used in dynamic systems where cycles and omitted temporal information complicate causal inference. Unlike in the traditional linear setting, where direct effects are typically easier to identify and estimate, non-parametric direct effects, which are crucial for handling real-world complexities, particularly in epidemiological contexts where relationships between variables (e.g., genetic, environmental, and behavioral factors) are often non-linear, are much harder to define and identify. In particular, we give sufficient conditions for identifying average controlled micro direct effect and average natural micro direct effect from summary causal graphs in the presence of hidden confounding. Furthermore, we show that the conditions given for the average controlled micro direct effect become also necessary in the setting where there is no hidden confounding and where we are only interested in identifiability by adjustment.
Primary Area: causal reasoning
Submission Number: 7760
Loading