Abstract: Trapped-Ion (TI) technology offers potential breakthroughs for Noisy Intermediate Scale Quantum (NISQ) computing. TI qubits offer extended coherence times and high gate fidelity, making them appealing for large-scale NISQ computers. Constructing such computers demands a distributed architecture connecting Quantum Charge Coupled Devices (QCCDs) via quantum matter-links and photonic switches. However, current distributed TI NISQ computers face hardware and system challenges. Entangling qubits across a photonic switch introduces significant latency, while existing compilers generate suboptimal mappings due to their unawareness of the interconnection topology. In this paper, we introduce TITAN, a large-scale distributed TI NISQ computer, which employs an innovative photonic interconnection design to reduce entanglement latency and an advanced partitioning and mapping algorithm to optimize matter-link communications. Our evaluations show that TITAN greatly enhances quantum application performance by 56.6% and fidelity by 19.7% compared to existing systems.
Loading