Abstract: This paper presents a comprehensive benchmarking study of various Federated Learning (FL) frameworks applied to the task of Medical Image Classification. The research specifically addresses the often neglected and complex aspects of scalability and usability in off-the-shelf FL frameworks. Through experimental validation using real case deployments, we provide empirical evidence of the performance and practical relevance of open source FL frameworks. Our findings contribute valuable insights for anyone interested in deploying a FL system, with a particular focus on the healthcare domain-an increasingly attractive field for FL applications.
Loading