Test-time Collective PredictionDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: degroot, consenesus finding, combining expert opinion, opinion pool, adaptive model weighting, data heterogeneity, social sciences, federated learning, ensemble
TL;DR: We build on the DeGroot model of human consensus finding to develop a new decentralized protocol for combining predictions of multiple agents at test time.
Abstract: An increasingly common setting in machine learning involves multiple parties, each with their own data, who want to jointly make predictions on future test points. Agents wish to benefit from the collective expertise of the full set of agents to make better predictions than they would individually, but may not be willing to release labeled data or model parameters. In this work, we explore a decentralized mechanism to make collective predictions at test time, that is inspired by the literature in social science on human consensus-making. Building on a query model to facilitate information exchange among agents, our approach leverages each agent’s pre-trained model without relying on external validation, model retraining, or data pooling. A theoretical analysis shows that our approach recovers inverse mean-squared-error (MSE) weighting in the large-sample limit which is known to be the optimal way to combine independent, unbiased estimators. Empirically, we demonstrate that our scheme effectively combines models with differing quality across the input space: the proposed consensus prediction achieves significant gains over classical model averaging, and even outperforms weighted averaging schemes that have access to additional validation data. Finally, we propose a decentralized Jackknife procedure as a tool to evaluate the sensitivity of the collective predictions with respect to a single agent's opinion.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: zip
12 Replies

Loading