Bellman Diffusion Models

Published: 01 Jan 2024, Last Modified: 05 Oct 2025CoRR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Diffusion models have seen tremendous success as generative architectures. Recently, they have been shown to be effective at modelling policies for offline reinforcement learning and imitation learning. We explore using diffusion as a model class for the successor state measure (SSM) of a policy. We find that enforcing the Bellman flow constraints leads to a simple Bellman update on the diffusion step distribution.
Loading