Representational Isomorphism and Alignment of Multilingual Large Language Models

Published: 01 Jan 2024, Last Modified: 15 May 2025EMNLP (Findings) 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In this paper, we investigate the capability of Large Language Models (LLMs) to represent texts in multilingual contexts. Our findings show that sentence representations derived from LLMs exhibit a high degree of isomorphism across languages.This existing isomorphism can facilitate representational alignments in zero-shot and few-shot settings.Specifically, by applying a contrastive objective at the representation level with only a small number of translation pairs (e.g., 100), we substantially improve models’ performance on Semantic Textual Similarity (STS) tasks across languages. This representation-level approach proves to be more efficient and effective for semantic alignment than continued pretraining or instruction tuning. Interestingly, we also observe substantial STS improvements within individual languages, even without a monolingual objective specifically designed for this purpose.
Loading