Keywords: Graph neural networks, Graph machine learning, conformal prediction
TL;DR: A method to perform valid conformal prediction on dynamic graphs using GNNs.
Abstract: Dynamic graphs provide a flexible data abstraction for modelling many sorts of real-world systems, such as transport, trade, and social networks. Graph neural networks (GNNs) are powerful tools allowing for different kinds of prediction and inference on these systems, but getting a handle on uncertainty, especially in dynamic settings, is a challenging problem.
In this work we propose to use a dynamic graph representation known in the tensor literature as the unfolding, to achieve valid prediction sets via conformal prediction. This representation, a simple graph, can be input to any standard GNN and does not require any modification to existing GNN architectures or conformal prediction routines.
One of our key contributions is a careful mathematical consideration of the different inference scenarios which can arise in a dynamic graph modelling context. For a range of practically relevant cases, we obtain valid prediction sets with almost no assumptions, even dispensing with exchangeability. In a more challenging scenario, which we call the semi-inductive regime, we achieve valid prediction under stronger assumptions, akin to stationarity.
We provide real data examples demonstrating validity, showing improved accuracy over baselines, and sign-posting different failure modes which can occur when those assumptions are violated.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11093
Loading