Abstract: In urban intelligent transportation systems, the real-time acquisition of network-wide traffic states is constrained by limited sensor density and high deployment costs. To address this challenge, this paper proposes a learnable Detection Point Selection Module (DPSM), which adaptively determines the most informative observation points through an end-to-end attention mechanism to support full-map traffic state estimation. Distinct from conventional fixed deployment strategies, DPSM provides an adaptive detector configuration that, under the same number of loop sensors, achieves significantly higher estimation accuracy by intelligently optimizing their placement. Specifically, the module takes normalized spatial and temporal information as input and generates an attention-based distribution to identify critical traffic flow readings, which are subsequently fed into various backbone prediction models, including fully connected networks, convolutional neural networks, and long short-term memory networks. Experiments on the real-world NGSIM-US101 dataset demonstrate that three variants—DPSM-NN, DPSM-CNN, and DPSM-LSTM—consistently outperform their corresponding baselines, with notable robustness under sparse observation scenarios. These results highlight the advantage of adaptive detector placement in maximizing the utility of limited sensors, effectively mitigating information loss from sparse deployments and offering a cost-efficient, scalable solution for urban traffic monitoring and control.
External IDs:dblp:journals/systems/ZhaoWZWL25
Loading