Abstract: Generally, order punctuality has received plenty of attention by manufacturers in order fulfillment. In order fabrication, jobs from a customer are often separately processed in dispersed manufacturing resources, such as different machines, facilities, or factories. This leads to the difficulties of processing customer orders in a simultaneous manner. This paper proposes a concept of manufacturing synchronization (MfgSync) and measures it from the perspective of simultaneity and punctuality. We study MfgSync of scheduling dynamic arrival orders in a hybrid flowshop. To deal with the dynamic order arrival environment, we schedule the coming orders in a periodic manner so that the dynamic scheduling problem is decomposed into a series of continuous static sub-problems. A base model for each sub-problem is mathematically formulated to minimize the simultaneity of order fabrication measured by mean longest waiting duration considering the order punctuality constraint. We then present a solution algorithm consisting of a periodic scheduling policy and a modified genetic algorithm. Numerical studies demonstrate the effectiveness of the proposed approach. The results also show that bottleneck position has a considerable impact on MfgSync, and we can obtain better MfgSync for the systems with entrance bottlenecks compared to middle and exist bottlenecks. And it is suggested to choose a larger decision interval in off season compared to peak season.
0 Replies
Loading