Neural Temporal Logic ProgrammingDownload PDF

29 Sept 2021, 00:35 (modified: 18 Nov 2021, 20:45)ICLR 2022 SubmittedReaders: Everyone
Keywords: logic programming, time series, neuro-symbolic, video, healthcare
Abstract: Events across a timeline are a common data representation, seen in different temporal modalities. Individual atomic events can occur in a certain temporal ordering to compose higher level composite events. Examples of a composite event are a patient's medical symptom or a baseball player hitting a home run, caused distinct temporal orderings of patient vitals and player movements respectively. Such salient composite events are provided as labels in temporal datasets and most works optimize models to predict these composite event labels directly. We focus uncovering the underlying atomic events and their relations that lead to the composite events within a noisy temporal data setting. We propose Neural Temporal Logic Programming (Neural TLP) which first learns implicit temporal relations between atomic events and then lifts logic rules for composite events, given only the composite events labels for supervision. This is done through efficiently searching through the combinatorial space of all temporal logic rules in an end-to-end differentiable manner. We evaluate our method on video and on healthcare data where it outperforms the baseline methods for rule discovery.
One-sentence Summary: We propose a framework to learn temporal logic rules over noisy time series data.
Supplementary Material: zip
19 Replies