Near-optimal Active Regression of Single-Index Models

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Lewis weights, Active regression, Query complexity
TL;DR: We provide a near-optimal query complexity for the active regression of single-index models.
Abstract: The active regression problem of the single-index model is to solve $\min_x \lVert f(Ax)-b\rVert_p$, where $A$ is fully accessible and $b$ can only be accessed via entry queries, with the goal of minimizing the number of queries to the entries of $b$. When $f$ is Lipschitz, previous results only obtain constant-factor approximations. This work presents the first algorithm that provides a $(1+\varepsilon)$-approximation solution by querying $\tilde{O}(d^{\frac{p}{2}\vee 1}/\varepsilon^{p\vee 2})$ entries of $b$. This query complexity is also shown to be optimal up to logarithmic factors for $p\in [1,2]$ and the $\varepsilon$-dependence of $1/\varepsilon^p$ is shown to be optimal for $p>2$.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5431
Loading