Estimation of Linear Space-Invariant DynamicsDownload PDFOpen Website

Published: 01 Jan 2020, Last Modified: 14 May 2023IEEE Signal Process. Lett. 2020Readers: Everyone
Abstract: We propose a computationally efficient estimator for multi-dimensional linear space-invariant system dynamics with periodic boundary conditions that attains low mean squared error from very few temporal steps. By exploiting the inherent redundancy found in many real-world spatiotemporal systems, the estimator performance improves with the dimensionality of the system. This paper provides a detailed analysis of maximum likelihood estimation of the state transition operator in linear space-invariant systems driven by Gaussian noise. The key result of this work is that, by incorporating the space-invariance prior, the mean squared error of a estimator normalized to the number of parameters is upper bounded by N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> M <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> + O(N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> M <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ), where N is the number of spatial points, and M is the number of observed timesteps after the initial value.
0 Replies

Loading