Exposing Limitations of Language Model Agents in Sequential-Task Compositions on the Web

Published: 11 Mar 2024, Last Modified: 22 Apr 2024LLMAgents @ ICLR 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Language Model Agents, Large Language Models, Web Automation, Web Navigation, Decision Making, Compositional Generalization
TL;DR: Despite human-level performances are reported in standard benchmark, (both prompted and finetuned) language model agents cannot generalize well to the compositional web automation tasks even composing of solved base tasks.
Abstract: Language model agents (LMA) recently emerged as a promising paradigm on muti-step decision making tasks, often outperforming humans and other reinforcement learning agents. Despite the promise, their performance on real-world applications that often involve combinations of tasks is still underexplored. In this work, we introduce a new benchmark, called CompWoB -- 50 new compositional web automation tasks reflecting more realistic assumptions. We show that while existing prompted LMAs (gpt-3.5-turbo or gpt-4) achieve 94.0% average success rate on base tasks, their performance degrades to 24.9% success rate on compositional tasks. On the other hand, transferred LMAs (finetuned only on base tasks) show less generalization gap, dropping from 85.4% to 54.8%. By balancing data distribution across tasks, we train a new model, HTML-T5++, that surpasses human-level performance (95.2%) on MiniWoB, and achieves the best zero-shot performance on CompWoB (61.5%). While these highlight the promise of small-scale finetuned and transferred models for task compositionality, their performance further degrades under different instruction compositions changing combinational order. In contrast to the recent remarkable success of LMA, our benchmark and detailed analysis emphasize the necessity of building LMAs that are robust and generalizable to task compositionality for real-world deployment.
Submission Number: 80
Loading