Keywords: Deepfakes, Face Forgery, Evaluation Benchmark, Forgery Detection
TL;DR: This is a paper about constructing a large-scale universal evaluation benchmark for face forgery detection
Abstract: With the rapid development of AI-generated content (AIGC) technology, the production of realistic fake facial images and videos that deceive human visual perception has become possible. Consequently, various face forgery detection techniques have been proposed to identify such fake facial content. However, evaluating the effectiveness and generalizability of these detection techniques remains a significant challenge. To address this, we have constructed a large-scale evaluation benchmark called DeepFaceGen, aimed at quantitatively assessing the effectiveness of face forgery detection and facilitating the iterative development of forgery detection technology. DeepFaceGen consists of 776,990 real face image/video samples and 773,812 face forgery image/video samples, generated using 34 mainstream face generation techniques. During the construction process, we carefully consider important factors such as content diversity, fairness across ethnicities, and availability of comprehensive labels, in order to ensure the versatility and convenience of DeepFaceGen. Subsequently, DeepFaceGen is employed in this study to evaluate and analyze the performance of 20 mainstream face forgery detection techniques from various perspectives. Through extensive experimental analysis, we derive significant findings and propose potential directions for future research. The code and dataset for DeepFaceGen are available at https://anonymous.4open.science/r/DeepFaceGen-47D1.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6668
Loading