Keywords: multimodal, representation learning, contrastive, transformer, masked attention, sentiment, sparsity, embedding space
TL;DR: Representation learning of multimodal data with improved rank and recall when samples have only a fraction of the set of modalities
Abstract: Multimodal data fusion is essential for applications requiring the integration of diverse data sources, especially in the presence of incomplete or sparsely available modalities. This paper presents a comparative study of three multimodal embedding techniques, Modal Channel Attention (MCA), Zorro, and Everything at Once (EAO), to evaluate their performance on sparsely multimodal data. MCA introduces fusion embeddings for all combinations of input modalities and uses attention masking to create distinct attention channels, enabling flexible and efficient data fusion. Experiments on two datasets with four modalities each, CMU-MOSEI and TCGA, demonstrate that MCA outperforms Zorro across ranking, recall, regression, and classification tasks and outperforms EAO across regression and classification tasks. MCA achieves superior performance by maintaining robust uniformity across unimodal and fusion embeddings. While EAO performs best in ranking metrics due to its approach of forming fusion embeddings post-inference, it underperforms in downstream tasks requiring multimodal interactions. These results highlight the importance of contrasting all modality combinations in constructing embedding spaces and offers insights into the design of multimodal architectures for real-world applications with incomplete data.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3219
Loading