Scalable spectral representations for multiagent reinforcement learning in network MDPs

Published: 22 Jan 2025, Last Modified: 06 Mar 2025AISTATS 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: We propose a scalable network multi-agent control framework based on spectral representations from factorizing local transition kernels.
Abstract: Network Markov Decision Processes (MDPs), which are the de-facto model for multi-agent control, pose a significant challenge to efficient learning caused by the exponential growth of the global state-action space with the number of agents. In this work, utilizing the exponential decay property of network dynamics, we first derive scalable spectral local representations for multiagent reinforcement learning in network MDPs, which induces a network linear subspace for the local $Q$-function of each agent. Building on these local spectral representations, we design a scalable algorithmic framework for multiagent reinforcement learning in continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm. Empirically, we validate the effectiveness of our scalable representation-based approach on two benchmark problems, and demonstrate the advantages of our approach over generic function approximation approaches to representing the local $Q$-functions.
Submission Number: 184
Loading