LLaRA: Supercharging Robot Learning Data for Vision-Language Policy

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Robot Learning, VLM, Behavior Cloning, Instruction Tuning, Self-supervised Learning
TL;DR: Effortlessly and efficiently transform a pretrained VLM into a robot policy and enhance its performance using auxiliary data generated in a self-supervised manner.
Abstract: Vision Language Models (VLMs) have recently been leveraged to generate robotic actions, forming Vision-Language-Action (VLA) models. However, directly adapting a pretrained VLM for robotic control remains challenging, particularly when constrained by a limited number of robot demonstrations. In this work, we introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations and enables an efficient transfer of a pretrained VLM into a powerful VLA, motivated by the success of visual instruction tuning in Computer Vision. First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets, aligning robotic actions with image pixel coordinates. Further, we enhance this dataset in a self-supervised manner by defining six auxiliary tasks, without requiring any additional action annotations. We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control. Through experiments across multiple simulated and real-world tasks, we demonstrate that LLaRA achieves state-of-the-art performance while preserving the generalization capabilities of large language models. The code, datasets, and pretrained models are available at https://github.com/LostXine/LLaRA.
Supplementary Material: zip
Primary Area: applications to robotics, autonomy, planning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8021
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview