THE ROBUSTNESS OF DIFFERENTIABLE CAUSAL DISCOVERY IN MISSPECIFIED SCENARIOS

Published: 22 Jan 2025, Last Modified: 18 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Differentiable causal discovery, model assumption violations, benchmark
TL;DR: Causal discovery algorithms are typically based on untestable causal assumptions. We study the performance of several mainstream algorithms under model assumption violations and find that differentiable causal discovery exhibits robust performance.
Abstract: Causal discovery aims to learn causal relationships between variables from targeted data, making it a fundamental task in machine learning. However, causal discovery algorithms often rely on unverifiable causal assumptions, which are usually difficult to satisfy in real-world data, thereby limiting the broad application of causal discovery in practical scenarios. Inspired by these considerations, this work extensively benchmarks the empirical performance of various mainstream causal discovery algorithms, which assume i.i.d. data, under eight model assumption violations. Our experimental results show that differentiable causal discovery methods exhibit robustness under the metrics of Structural Hamming Distance and Structural Intervention Distance of the inferred graphs in commonly used challenging scenarios, except for scale variation. We also provide the theoretical explanations for the performance of differentiable causal discovery methods. Finally, our work aims to comprehensively benchmark the performance of recent differentiable causal discovery methods under model assumption violations, and provide the standard for reasonable evaluation of causal discovery, as well as to further promote its application in real-world scenarios.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1418
Loading