Policy-aware Reward Modeling with Uncertainty-Gradient based Data Augmentation

ICLR 2025 Conference Submission1579 Authors

18 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reward Modeling, Large Language Model, Data Augmentation
Abstract: Reinforcement Learning from Human Feedback (RLHF) has emerged as a standard and effective approach for training large language models (LLMs) with human preferences. In this framework, a learned reward model approximates human preferences and guides policy optimization, making it crucial to develop an accurate reward model. However, without the ``true'' reward function, challenges arise when the reward model is an imperfect proxy for human preference. Since the policy optimization continuously shifts the human preference training dataset's distribution. The fixed reward model suffers from this problem of off-distribution, especially the on policy methods. While collecting new preference data can mitigate this issue, it is costly and challenging to optimize. Thus, reusing the policy interaction samples becomes a possible way to further refine the reward model. To tackle these challenges, we introduce a novel method \textbf{U}ncertainty-\textbf{G}radient based \textbf{D}ata \textbf{A}ugmentation (\textbf{UGDA} for short) to enhance reward modeling by leveraging policy samples to maintain on-distribution performance. Specifically, UGDA selects interaction samples based on the uncertainty of the reward ensembles and the gradient based influence of policy optimization. After the reward relabeling of selected samples, we use supervised learning to refine the reward ensembles, then get the retrained policy. Extensive experiments demonstrate that by leveraging UGDA to select a few samples without the costly human preference data collection, we can improve the ability of the policy and surpass the state-of-the-art methods.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1579
Loading