Keywords: Federated Learning, Distributed Learning, Personalized Learning
Abstract: In Federated Learning (FL), the distributed nature and heterogeneity of client data present both opportunities and challenges. While collaboration among clients can significantly enhance the learning process, not all collaborations are beneficial; some may even be detrimental. In this study, we introduce a novel algorithm that assigns adaptive aggregation weights to clients participating in FL training, identifying those with data distributions most conducive to a specific learning objective. We demonstrate that our aggregation method converges no worse than the method that aggregates only the updates received from clients with the same data distribution. Furthermore, empirical evaluations consistently reveal that collaborations guided by our algorithm outperform traditional FL approaches. This underscores the critical role of judicious client selection and lays the foundation for more streamlined and effective FL implementations in the coming years.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1293
Loading