Sparsity by Redundancy: Solving $L_1$ with a Simple ReparametrizationDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024Submitted to ICLR 2023Readers: Everyone
Keywords: L1, sparsity, feature selection, deep learning, landscape
Abstract: We identify and prove a general principle: $L_1$ sparsity can be achieved using a redundant parametrization plus $L_2$ penalty. Our results lead to a simple algorithm, \textit{spred}, that seamlessly integrates $L_1$ regularization into any modern deep learning framework. Practically, we demonstrate (1) the efficiency of \textit{spred} in optimizing conventional tasks such as lasso and sparse coding, (2) benchmark our method for nonlinear feature selection of six gene selection tasks, and (3) illustrate the usage of the method for achieving structured and unstructured sparsity in deep learning in an end-to-end manner. Conceptually, our result bridges the gap in understanding the inductive bias of the redundant parametrization common in deep learning and conventional statistical learning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: We propose a simple method for solving general L1 penalized objectives with gradient descent
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:2210.01212/code)
17 Replies

Loading