UAV Cross-Modal Image Registration: Large-Scale Dataset and Transformer-Based Approach

Published: 01 Jan 2023, Last Modified: 14 Nov 2024BICS 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: It is common to equip unmanned aerial vehicle (UAV) with visible-thermal infrared cameras to enable them to operate around the clock under any weather conditions. However, these two cameras often encounter significant non-registration issues. Multimodal methods depend on registered data, whereas current platforms often lack registration. This absence of registration renders the data unusable for these methods. Thus, there is a pressing need for research on UAV cross-modal image registration. At present, a scarcity of datasets has limited the development of this area. For this reason, we construct a dataset for visible infrared image registration (UAV-VIIR), which consists of 5560 image pairs. The dataset has five additional challenges including low-light, low-texture, foggy weather, motion blur, and thermal crossover. Furthermore, the dataset covers more than a dozen diverse and complex UAV scences. As far as our knowledge extends, this dataset ranks among the largest open-source collections available in this field. Additionally, we propose a transformer-based homography estimation network (THENet), which incorporates a cross-enhanced transformer module and effectively enhances the features of different modalities. Extensive experiments are conducted on our proposed dataset to demonstrate the superiority and effectiveness of our approach compared to state-of-the-art methods.
Loading