Abstract: This paper proposes an approach on Facebook search in Arabic, which exploits several users' traces (e.g. comment, share, reactions) left on Facebook posts to estimate their social importance. Our goal is to show how these social traces (signals) can play a vital role in improving Arabic Facebook search. Firstly, we identify polarities (positive or negative) carried by the textual signals (e.g. comments) and non-textual ones (e.g. the reactions love and sad) for a given Facebook post. Therefore, the polarity of each comment expressed on a given Facebook post, is estimated on the basis of a neural sentiment model in Arabic language. Secondly, we group signals according to their complementarity using features selection algorithms. Thirdly, we apply learning to rank (LTR) algorithms to re-rank Facebook search results based on the selected groups of signals. Finally, experiments are carried out on 13,500 Facebook posts, collected from 45 topics in Arabic language. Experiments results reveal that Random Forests combined with ReliefFAttributeEval (RLF) was the most effective LTR approach for this task.
0 Replies
Loading