Efficient Modulation for Vision Networks

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: EfficientMod, Efficient Networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: In this study, we introduce Efficient Modulation (EfficientMod), a novel design for efficient networks that oupforms other methods in terms of both results and latency.
Abstract: In this work, we present efficient modulation, a novel design for efficient vision networks. We revisit the modulation mechanism, which operates input through convolutional context modeling and feature projection layers, and fuses features via element-wise multiplication and an MLP block. We demonstrate that the abstracted modulation mechanism is particularly well suited for efficient networks and further tailor the modulation design by proposing the efficient modulation (EfficientMod) block, which is considered the essential building block for our networks. Bene- fiting from the prominent representational ability of modulation mechanism and the efficiency of efficient modulation design, our network can accomplish better accuracy-efficiency trade-offs and set new state-of-the-art performance for efficient networks. When integrating EfficientMod block with the vanilla self-attention block, we obtain the hybrid architecture and further improve the performance without sacrificing the efficiency. We carry out comprehensive experiments to verify EfficientMod’s performance. With fewer parameters, our EfficientMod-s performs 0.6 top-1 accuracy better than the prior state-of-the-art approach EfficientFormerV2-s2 without any training tricks and is 25% faster on GPU. Additionally, our method presents a notable improvement in downstream tasks, outperforming EfficientFormerV2-s by 3.6 mIoU on the ADE20K benchmark. Code and checkpoints are available at https://github.com/ma-xu/EfficientMod.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 8518
Loading