Learning Object-centric Latent Dynamics for Reinforcement Learning from Pixels

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement Learning, World Models, Object-centric Representations
TL;DR: We propose a model-based reinforement learning algorithm that learns an object-centric latent dynamics model from pixels.
Abstract: Learning a latent dynamics model provides a task-agnostic representation of an agent’s understanding of its environment. Leveraging this knowledge for model-based reinforcement learning holds the potential to improve sample efficiency over model-free methods by learning inside imagined rollouts. Furthermore, because the latent space serves as input to behavior models, the informative representations learned by the world model facilitate efficient learning of desired skills. However, most existing methods rely on holistic representations of the environment’s state. In contrast, humans reason about objects and their interactions, forecasting how actions will affect specific parts of their surroundings. Inspired by this, we propose Slot-Attention for Object-centric Latent Dynamics (SOLD), a novel algorithm that learns object-centric dynamics models in an unsupervised manner from pixel inputs. We demonstrate that the structured latent space not only improves model interpretability but also provides a valuable input space for behavior models to reason over. Our results show that SOLD outperforms DreamerV3, a state-of-the-art model-based RL algorithm, across a range of benchmark robotic environments that evaluate for both relational reasoning and low-level manipulation capabilities.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4678
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview