Recurrent interactions can explain the variance in single trial responses

Published: 01 Jan 2020, Last Modified: 14 May 2025PLoS Comput. Biol. 2020EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Author summary V1 neurons exhibit substantial response variability while being massively interconnected, complicating the development of a comprehensive theory of visual encoding. Some work has pointed to a global description, in which stimuli and spontaneous behaviors are the main drivers of neuronal responses. However, other work concerning the retina and elsewhere suggest that local correlations between neighboring neurons shape a target neuron’s single trial responses to a much greater extent than global variables. In this work, we compare and evaluate local and global descriptions of variable single trial responses in mouse V1. We compute pairwise correlations of neuronal activity after accounting for global variables, and define the “functional group” of a neuron to be those neurons exhibiting correlated activity over short time scales. We find that the knowledge of the activity of a target neuron’s functional group enables much more accurate predictions of single trial responses as compared to knowledge of the stimulus condition or mouse locomotion. Moreover, we show that the informative correlations are strong, positive, and are exhibited on short time scales. Finally, we find that local correlations enable accurate decoding of the visual stimulus. These results point to a local description of the visual system over short time scales.
Loading