Efficient Exact Minimum k-Core Search in Real-World GraphsOpen Website

Published: 01 Jan 2023, Last Modified: 13 Feb 2024CIKM 2023Readers: Everyone
Abstract: The k-core, which refers to the induced subgraph with a minimum degree of at least k, is widely used in cohesive subgraph discovery and has various applications. However, the k-core in real-world graphs tends to be extremely large, which hinders its effectiveness in practical applications. This challenge has motivated researchers to explore a variant of the k-core problem known as the minimum k-core search problem. This problem has been proven to be NP-Hard, and most of the existing studies naturally either deal with approximate solutions or suffer from inefficiency in practice. In this paper, we focus on designing efficient exact algorithms for the minimum k-core search problem. In particular, we develop an iterative-based framework that decomposes an instance of the minimum k-core search problem into a list of problem instances on another well-structured graph pattern. Based on this framework, we propose an iterative-based branch-and-bound algorithm, namely IBB, with additional pruning and reduction techniques. We show that, with a n-vertex graph, IBB runs in cn nO(1) time for some c < 2, achieving better theoretical performance than the trivial bound of 2n nO(1). Finally, our experiments on real-world graphs demonstrate that IBB is up to three orders of magnitude faster than the state-of-the-art algorithms on real-world datasets.
0 Replies

Loading