Abstract: Author summary It is well known that the computation of neuronal circuits is carried out through the staged and cascade structure of different types of neurons. Nevertheless, the information, particularly sensory information, is processed in a network primarily with feedforward connections through different pathways. A peculiar example is the early visual system, where light is transcoded by the retinal cells, routed by the lateral geniculate nucleus, and reached the primary visual cortex. One meticulous interest in recent years is to map out these physical structures of neuronal pathways. However, most methods so far are limited to taking snapshots of a static view of connections between neurons. It remains unclear how to obtain a functional and dynamical neuronal circuit beyond the simple scenarios of a few randomly sampled neurons. Using simulated spiking neural networks of visual pathways with different scenarios of multiple stages, mixed cell types, and natural image stimuli, we demonstrate that a recent computational tool, named spike-triggered non-negative matrix factorization, can resolve these issues. It enables us to recover the entire structural components of neural networks underlying the computation, together with the functional components of each individual neuron. Utilizing it for complex cells of the primary visual cortex allows us to reveal every underpinning of the nonlinear computation. Our results, together with other recent experimental and computational efforts, show that it is possible to systematically dissect neural circuitry with detailed structural and functional components.
0 Replies
Loading