Mobility Networked Time-Series Forecasting Benchmark Datasets

Published: 01 Jan 2025, Last Modified: 24 Jul 2025ICWSM 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Human mobility is crucial for urban planning (e.g., public transportation) and epidemic response strategies. However, existing research often neglects integrating comprehensive perspectives on spatial dynamics, temporal trends, and other contextual views due to the limitations of existing mobility datasets. To bridge this gap, we introduce MOBINS (MOBIlity Networked time Series), a novel dataset collection designed for networked time-series forecasting of dynamic human movements. MOBINS features diverse and explainable datasets that capture various mobility patterns across different transportation modes in four cities and two countries and cover both transportation and epidemic domains at the administrative area level. Our experiments with nine baseline methods reveal the significant impact of different model backbones on the proposed six datasets. We provide a valuable resource for advancing urban mobility research.
Loading