Diffusion-based Neural Network Weights Generation

Published: 22 Jan 2025, Last Modified: 13 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: generative hyper-representation learning, diffusion model, neural network weights generation, parameters generation, hypernetworks
TL;DR: D2NWG
Abstract: Transfer learning is a cornerstone of modern deep learning, yet it remains constrained by challenges in model selection and the overhead of extensive model storage. In this work, we present Diffusion-based Neural Network Weights Generation, D2NWG, a novel framework that leverages diffusion processes to synthesize task-specific network weights. By modeling the distribution of weights from a diverse ensemble of pretrained models and conditioning the generation process on dataset characteristics, task descriptions, and architectural specifications, D2NWG circumvents the need for storing and searching through massive model repositories. We evaluate D2NWG across multiple experimental settings. On in-distribution tasks, our framework achieves performance that is on par with or superior to conventional pretrained models, while also serving as an effective initialization strategy for novel domains, resulting in faster convergence and a 6\% improvement in few-shot learning scenarios. Extensive ablation studies further indicate that our approach scales robustly with increased diversity and volume of pretrained models. Moreover, D2NWG demonstrates significant promise for large language model applications. In evaluations on the OpenLM leaderboard, our method improved LLaMA-3-2-1B-Instruct performance by 3\% on challenging mathematical reasoning tasks, with a consistent gain of 0.36\% across a range of benchmarks. These findings establish D2NWG as a versatile and powerful framework for neural network weight generation, offering a scalable solution to the limitations of traditional transfer learning.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9419
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview