A Study of Unsupervised Evaluation Metrics for Practical and Automatic Domain Adaptation

17 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Unsupervised Evaluation Metrics, Unsupervised Domain Adaptation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Unsupervised domain adaptation (UDA) methods facilitate the transfer of models to target domains without labels. However, these methods necessitate a labeled target validation set for hyper-parameter tuning and model selection. In this paper, we aim to find an evaluation metric capable of assessing the quality of a transferred model without access to target validation labels. We begin with the metric based on mutual information of the model prediction. Through empirical analysis, we identify three prevalent issues with this metric: 1) It does not account for the source structure. 2) It can be easily attacked. 3) It fails to detect negative transfer caused by the over-alignment of source and target features. To address the first two issues, we incorporate source accuracy into the metric and employ a new MLP classifier that is held out during training, significantly improving the result. To tackle the final issue, we integrate this enhanced metric with data augmentation, resulting in a novel unsupervised UDA metric called the Augmentation Consistency Metric (ACM). Additionally, we empirically demonstrate the shortcomings of previous experiment settings and conduct large-scale experiments to validate the effectiveness of our proposed metric. Furthermore, we leverage our metric to automatically search for the optimal set of hyper-parameters, achieving superior performance comparable to manually tuned sets across four common benchmarks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Submission Number: 900
Loading