Explainable CNN With Fuzzy Tree Regularization for Respiratory Sound AnalysisDownload PDFOpen Website

2022 (modified: 18 Nov 2022)IEEE Trans. Fuzzy Syst. 2022Readers: Everyone
Abstract: Auscultation is an important tool for diagnosing respiratory-related diseases. Unfortunately, the quality of auscultation is limited by the professional level of the doctor and the environment of the auscultation. Some studies have focused on automated auscultation techniques. However, existing approaches suffer from two challenges: 1) the models cannot learn from data distributed among multiple hospitals and 2) the predictions of the models are difficult to interpret for physicians. To address this issue, this article proposes a novel explainable respiratory sound analysis framework with fuzzy decision tree regularization. This framework develops an ensemble knowledge distillation technique to learn distributed data and achieves good performance in terms of model efficiency and accuracy. Fuzzy decision trees are used to explain the predictions of the model and produce decision rules that can be well accepted by physicians. The effectiveness of this framework is thoroughly validated on the Respiratory Sound database and compared with other existing approaches.
0 Replies

Loading