Abstract: Traffic flow prediction is a critical component of intelligent transportation systems. This study introduces a Bidirectional Long Short-Term Memory (Bi-LSTM) neural network for predicting traffic flow. The model utilizes traffic, weather, and holiday data. To evaluate the model’s performance, three experiments were assessed: E1, using all available inputs; E2, excluding weather conditions; and E3 excluding holiday information. The model was trained using the previous 3, 12, and 24 h of data to predict traffic flow for the next 12 h, and its performance was compared with a LSTM model. Traffic predictions benefit from having a large and diverse dataset. Bi-LSTM model can capture temporal patterns more effectively than the LSTM. The MAPE value is improved in around 1% when we increase the historical from 3h to 24 h, plus 1% if Bi-LSTM model is used. Better results are obtained when contextual information is provided. These results reinforce the potential that deep learning models have in the prediction of traffic conditions and the impact of a large and varied dataset in the accuracy of these predictions.
Loading