Disrupting Deep Uncertainty Estimation Without Harming AccuracyDownload PDF

Published: 09 Nov 2021, Last Modified: 17 Sept 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: uncertainty estimation, adversarial attacks, deep neural networks, selective prediction, attacking uncertainty estimation
TL;DR: Complete disruption of well-known uncertainty estimators for deep neural networks using adversarial attacks, while keeping the network's accuracy intact
Abstract: Deep neural networks (DNNs) have proven to be powerful predictors and are widely used for various tasks. Credible uncertainty estimation of their predictions, however, is crucial for their deployment in many risk-sensitive applications. In this paper we present a novel and simple attack, which unlike adversarial attacks, does not cause incorrect predictions but instead cripples the network's capacity for uncertainty estimation. The result is that after the attack, the DNN is more confident of its incorrect predictions than about its correct ones without having its accuracy reduced. We present two versions of the attack. The first scenario focuses on a black-box regime (where the attacker has no knowledge of the target network) and the second scenario attacks a white-box setting. The proposed attack is only required to be of minuscule magnitude for its perturbations to cause severe uncertainty estimation damage, with larger magnitudes resulting in completely unusable uncertainty estimations. We demonstrate successful attacks on three of the most popular uncertainty estimation methods: the vanilla softmax score, Deep Ensembles and MC-Dropout. Additionally, we show an attack on SelectiveNet, the selective classification architecture. We test the proposed attack on several contemporary architectures such as MobileNetV2 and EfficientNetB0, all trained to classify ImageNet.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2110.13741/code)
Code: https://github.com/IdoGalil/ACE
12 Replies