SHAP-CAT: A interpretable multi-modal framework enhancing WSI classification via virtual staining and shapley-value-based multimodal fusion

27 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: multimodal, data fusion, computational pathology, shapley value, virtual staining
Abstract: The multimodal model has demonstrated promise in histopathology. However, most multimodal models are based on H\&E and genomics, adopting increasingly complex yet black-box designs. In our paper, we propose a novel interpretable multimodal framework named SHAP-CAT, which uses a Shapley-value-based dimension reduction technique for effective multimodal fusion. Starting with two paired modalities -- H\&E and IHC images, we employ virtual staining techniques to enhance limited input data by generating a new clinical-related modality. We extract very lightweight bag-level representations from each image modality and apply a Shapley-value-based mechanism for dimension reduction. Lightweight bag-level representations are extracted from image modalities and a Shapley-value-based mechanism is used for dimension reduction.For each dimension of the bag-level representation, attribution values are calculated to indicate how changes in the specific dimensions of the input affect the model output. In this way, we select a few top important dimensions of bag-level representation for each image modality to late fusion. Our experimental results demonstrate that the proposed SHAP-CAT framework incorporating synthetic modalities significantly enhances model performance, yielding a 5\% increase in accuracy for the BCI, an 8\% increase for IHC4BC-ER, and an 11\% increase for the IHC4BC-PR dataset.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8412
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview