Abstract: Prior work in natural-language-driven navigation demonstrates success in systems deployed in synthetic environments or applied to large datasets, both real and synthetic. However, there is an absence of such frameworks being deployed and rigorously tested in real environments, unknown a priori. In this paper, we present a novel framework that uses spoken dialogue with a real person to interpret a set of navigational instructions into a plan and subsequently execute that plan in a novel, unknown, indoor environment. This framework is implemented on a real robot and its performance is evaluated in 39 trials across 3 novel test-building environments. We also demonstrate that our approach outperforms three prior vision-and-language navigation methods in this same environment.
0 Replies
Loading