CuNeRF: Cube-Based Neural Radiance Field for Zero-Shot Medical Image Arbitrary-Scale Super Resolution

Published: 01 Jan 2023, Last Modified: 13 Nov 2024ICCV 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Medical image arbitrary-scale super-resolution (MIASSR) has recently gained widespread attention, aiming to supersample medical volumes at arbitrary scales via a single model. However, existing MIASSR methods face two major limitations: (i) reliance on high-resolution (HR) volumes and (ii) limited generalization ability, which restricts their applications in various scenarios. To overcome these limitations, we propose Cube-based Neural Radiance Field (CuNeRF), a zero-shot MIASSR framework that is able to yield medical images at arbitrary scales and free viewpoints in a continuous domain. Unlike existing MISR methods that only fit the mapping between low-resolution (LR) and HR volumes, CuNeRF focuses on building a continuous volumetric representation from each LR volume without the knowledge of the corresponding HR one. This is achieved by the proposed differentiable modules: cube-based sampling, isotropic volume rendering, and cube-based hierarchical rendering. Through extensive experiments on magnetic resource imaging (MRI) and computed tomography (CT) modalities, we demonstrate that CuNeRF can synthesize high-quality SR medical images, which outperforms state-of-the-art MISR methods, achieving better visual verisimilitude and fewer objectionable artifacts. Compared to existing MISR methods, our CuNeRF is more applicable in practice.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview