Compressive image recovery using recurrent generative modelDownload PDFOpen Website

2017 (modified: 03 Nov 2022)ICIP 2017Readers: Everyone
Abstract: Reconstruction of signals from compressively sensed measurements is an ill-posed problem. In this paper, we leverage the recurrent generative model, RIDE, as an image prior for compressive image reconstruction. Recurrent networks can model long-range dependencies in images and hence can handle global multiplexing in compressive imaging. We perform MAP inference with RIDE using back-propagation to the inputs and projected gradient method. We propose an entropy thresholding based approach for preserving texture in images well. Our approach shows superior reconstructions compared to recent global reconstruction approaches like D-AMP and TVAL3 on both simulated and real data.
0 Replies

Loading