Exploring a Graph-based Approach to Offline Reinforcement Learning for Sepsis Treatment

Published: 17 Jul 2025, Last Modified: 06 Sept 2025EWRL 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement Learning; Offline Reinforcement Learning; Graph Neural Networks; Sepsis treatment
Abstract: Sepsis is a serious, life-threatening condition. When treating sepsis, it is challenging to determine the correct amount of intravenous fluids and vasopressors for a given patient. While automated reinforcement learning (RL)-based methods have been used to support these decisions with promising results, previous studies have relied on relational data. Given the complexity of modern healthcare data, representing data as a graph may provide a more natural and effective approach. This study models patient data from the well-known MIMIC-III dataset as a heterogeneous graph that evolves over time. Subsequently, we explore two Graph Neural Network architectures - GraphSAGE and GATv2 - for learning patient state representations, adopting the approach of decoupling representation learning from policy learning. The encoders are trained to produce latent state representations, jointly with decoders that predict the next patient state. These representations are then used for policy learning with the dBCQ algorithm. The results of our experimental evaluation confirm the potential of a graph-based approach, while highlighting the complexity of representation learning in this domain.
Confirmation: I understand that authors of each paper submitted to EWRL may be asked to review 2-3 other submissions to EWRL.
Serve As Reviewer: ~Taisiya_Khakharova1
Track: Regular Track: unpublished work
Submission Number: 155
Loading