RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised LearningDownload PDF

21 May 2021, 20:47 (edited 26 Oct 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: Efficient Semi Supervised Learning, Semi Supervised Learning, Data Efficient Learning, Robust Learning, Coresets
  • TL;DR: Training Semi-supervised algorithms on a Coreset of Unlabeled data for faster convergence and robust learning.
  • Abstract: Semi-supervised learning (SSL) algorithms have had great success in recent years in limited labeled data regimes. However, the current state-of-the-art SSL algorithms are computationally expensive and entail significant compute time and energy requirements. This can prove to be a huge limitation for many smaller companies and academic groups. Our main insight is that training on a subset of unlabeled data instead of entire unlabeled data enables the current SSL algorithms to converge faster, significantly reducing computational costs. In this work, we propose RETRIEVE, a coreset selection framework for efficient and robust semi-supervised learning. RETRIEVE selects the coreset by solving a mixed discrete-continuous bi-level optimization problem such that the selected coreset minimizes the labeled set loss. We use a one-step gradient approximation and show that the discrete optimization problem is approximately submodular, enabling simple greedy algorithms to obtain the coreset. We empirically demonstrate on several real-world datasets that existing SSL algorithms like VAT, Mean-Teacher, FixMatch, when used with RETRIEVE, achieve a) faster training times, b) better performance when unlabeled data consists of Out-of-Distribution (OOD) data and imbalance. More specifically, we show that with minimal accuracy degradation, RETRIEVE achieves a speedup of around $3\times$ in the traditional SSL setting and achieves a speedup of $5\times$ compared to state-of-the-art (SOTA) robust SSL algorithms in the case of imbalance and OOD data. RETRIEVE is available as a part of the CORDS toolkit: https://github.com/decile-team/cords.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/decile-team/cords
11 Replies

Loading