Enhancing Conversational Aspect-Based Sentiment Quadruple Analysis with Context Fusion Encoding Method
Abstract: Aspect-based sentiment analysis (ABSA) has been a hot research topic due to its ability to fully exploit people’s opinions through social media texts. Compared with analyzing sentiment in short texts, conversational aspect-based sentiment quadruple analysis, also known as DiaASQ, aiming to extract the sentiment quadruple of target-aspect-opinion-sentiment in a dialogue, is a relatively new task that involves multiple speakers with varying stances in a conversation. Conversations are longer than ordinary texts and have richer contexts, which can lead to context loss and pairing errors. To address this issue, this work proposes a context-fusion encoding method based on conversation threads and lengths to integrate the speech of different speakers, enabling the model to better understand conversational context and extract cross-utterance quadruples. Experimental results have demonstrated that the proposed method achieves an average F1-score of 42.12% in DiaASQ, which is 6.48% higher than the best comparative model, indicating superior performance.
Loading