Keywords: Seismic modeling, inverse problem, neural operator
Abstract: Global seismic tomography, taking advantage of seismic waves from natural earthquakes, provides essential insights into the earth's internal dynamics. Advanced FWI techniques, whose aim is to meticulously interpret every detail in seismograms, confront formidable computational demands in forward modeling and adjoint simulations on a global scale. Recent advancements in ML offer a transformative potential for accelerating the computational efficiency of FWI and extending its applicability to larger scales. This work presents the first 3D global synthetic dataset tailored for seismic wavefield modeling and full-waveform tomography, referred to as the GlobalTomo dataset. This dataset is uniquely comprehensive, incorporating explicit wave physics and robust geophysical parameterization at realistic global scales, generated through state-of-the-art forward simulations optimized for 3D global wavefield calculations. Through extensive analysis and the establishment of ML baselines, we illustrate that ML approaches are particularly suitable for global FWI, overcoming its limitations with rapid forward modeling and flexible inversion strategies. This work represents a cross-disciplinary effort to enhance our understanding of the earth's interior through physics-ML modeling.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8910
Loading