Detecting Neurocognitive Disorders Through Analyses of Topic Evolution and Cross-Modal Consistency in Visual-Stimulated Narratives

Published: 2025, Last Modified: 08 Jan 2026IEEE J. Sel. Top. Signal Process. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management. Given that language impairments manifest early in NCD progression, visual-stimulated narrative (VSN)-based analysis offers a promising avenue for NCD detection. Current VSN-based NCD detection methods primarily focus on linguistic microstructures (e.g., lexical diversity) that are closely tied to bottom-up, stimulus-driven cognitive processes. While these features illuminate basic language abilities, the higher-order linguistic macrostructures (e.g., topic development) that may reflect top-down, concept-driven cognitive abilities remain underexplored. These macrostructural patterns are crucial for NCD detection, yet challenging to quantify due to their abstract and complex nature. To bridge this gap, we propose two novel macrostructural approaches: (1) a Dynamic Topic Model (DTM) to track topic evolution over time, and (2) a Text-Image Temporal Alignment Network (TITAN) to measure cross-modal consistency between narrative and visual stimuli. Experimental results show the effectiveness of the proposed approaches in NCD detection, with TITAN achieving superior performance across three corpora: ADReSS (F1 = 0.8889), ADReSSo (F1 = 0.8504), and CU-MARVEL-RABBIT (F1 = 0.7238). Feature contribution analysis reveals that macrostructural features (e.g., topic variability, topic change rate, and topic consistency) constitute the most significant contributors to the model's decision pathways, outperforming the investigated microstructural features. These findings underscore the value of macrostructural analysis for understanding linguistic-cognitive interactions associated with NCDs.
Loading