Abstract: Video streams are delivered continuously to save the cost of storage and device memory. Real-time denoising algorithms are typically adopted on the user device to remove the noise involved during the shooting and transmission of video streams. However, sliding-window-based methods feed multiple input frames for a single output and lack computation efficiency. Recent multi-output inference works propagate the bidirectional temporal feature with a parallel or recurrent framework, which either suffers from performance drops on the temporal edges of clips or can not achieve online inference. In this paper, we propose a Bidirectional Streaming Video Denoising (BSVD) framework, to achieve high-fidelity real-time denoising for streaming videos with both past and future temporal receptive fields. The bidirectional temporal fusion for online inference is considered not applicable in the MoViNet. However, we introduce a novel Bidirectional Buffer Block as the core module of our BSVD, which makes it possible during our pipeline-style inference. In addition, our method is concise and flexible to be utilized in both non-blind and blind video denoising. We compare our model with various state-of-the-art video denoising models qualitatively and quantitatively on synthetic and real noise. Our method outperforms previous methods in terms of restoration fidelity and runtime.
0 Replies
Loading