CI-VAE: a Class-Informed Deep Variational Autoencoder for Enhanced Class-Specific Data Interpolation
Keywords: Variational Auto Encoder, Supervised, Latent Space Traversal, Data Interpolation, Discriminator
TL;DR: A deep learning framework for interpolations in high-dimensional data
Abstract: We proposed Class-Informed Variational Autoencoder (CI-VAE) to enable interpolation between arbitrary pairs of observations of the same class. CI-VAE combines the general VAE architecture with a linear discriminator layer on the latent space to enforce the construction of a latent space such that observations from different classes are linearly separable. In conventional VAEs, class overlapping on the latent space usually occurs. However, in CI-VAE, the enforced linear separability of classes on the latent space allows for robust latent-space linear traversal and data generation between two arbitrary observations of the same class. Class-specific data interpolation has extensive potential applications in science, particularly in biology, such as uncovering the biological trajectory of diseases or cancer. We used the MNIST dataset of handwritten digits as a case study to compare the performance of CI-VAE and VAE in class-specific data augmentation. We showed that CI-VAE significantly improved class-specific linear traversal and data augmentation compared with VAE while maintaining comparable reconstruction error. In a study of Colon cancer genomics data, we showed that the interpolation between normal cells and tumor cells using CI-VAE may enhance our understanding of cancer development.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
5 Replies
Loading