OPIAS: Over-Personalization in Information Access SystemsOpen Website

2020 (modified: 27 May 2021)UMAP (Adjunct Publication) 2020Readers: Everyone
Abstract: "Filter bubbles," a phenomenon in which users become caught in an information space with low diversity, can have various negative effects. Several tools have been created to monitor the users' actions to make them aware of their own filter bubbles, but these tools have disadvantages (e.g., infringement on privacy). We propose a standalone demo that does not require any personal data. It emulates Facebook, a well-known and popular social network. We demonstrate how each user interaction may affect the selection of subsequent posts, sometimes resulting in the creation of a 'filter bubble.' The administrator (researcher) can tailor the demo for any context, changing the topics and points of view used in the demo. Data collection via surveys before and after the demo is facilitated so that the demo can be used for research, in addition to education.
0 Replies

Loading