Abstract: Metric-based few-shot learning methods concentrate on learning transferable feature embedding which generalizes well from seen categories to unseen categories under limited supervision. However, most of the methods treat each individual instance separately without considering its relationships with the others in the working context. We investigate a new metric-learning method to explicitly exploit these relationships. In particular, for an instance, we choose the samples that are visually similar from the working context, and perform weighted information propagation to attentively aggregate helpful information from the chosen samples to enhance its representation. We further formulate the distance metric as a learnable relation module which learns to compare for similarity measurement, and equip the working context with memory slots, both contributing to generality. We empirically demonstrate that the proposed method yields significant improvement over its ancestor and achieves competitive or even better performance when compared with other few-shot learning approaches on the two major benchmark datasets, i.e.mini Imagenet andtiered Imagenet.
0 Replies
Loading